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Abstract-The generalized conditions under which stiffened plates can be approximated as a two­
dimensional continuum arc investigated and identified. A simplified set of constitutive equations
dclining the full class of problems described above. subject to clastic behaviour. arc then obtained
by making 1iuitabh: assumptions. The significance of these assumptions is investigated under a wide
range ofwndilions. and the results calculated for typi.:al problems using the simple theory compared
with experiment.lIly obtained values. The simple theory is then amended to allow consistently for
the clTc.:ts due to Poisson's ratio in the stitTeners. A study of the resulting equations indicates that
whilst the normal .\ssumption of centroidal neutral alles is justified under all conditions. the
additional strain energy generated in the stiffeners can be significant. and that under the assumption
of centroidal neutral alles this is readily included In ,he formulation without penalty. She.lr eIT,,'\:ts
.'lher than th.'se due hl SI. Venant torsion arc llt'l .:onsidered in the detailed analysis.

I. INTROOlJCTION

The eccentrkally stil1cned plate sUhject to transverse loading is an extremely common
structural form. 1\ full three-dimensiollill ..n..lysis of these memhcrs is usually ..voided hy
adopting a thin III or moderately thick(2) plate theory hased on the concept of smoothed
Ikxural, torsional. and transverse shear rigidities. However. the ..pproximation of one
structural form hy another is an expedient which inevit..hly raises questions of v..lidity: in
the present context. depending on the spacings. sizes. shapes. and orientations of the
stillcners. smile or all of the following l.:onsiderations lllay merit spcl.:ial attention.

(I) The l.:omhinations of stil1cner orientations for which the strain distribution through­
out the thickness of the structure can he generalized.

(2) The possibility of distortions of the cross-sel.:tions.
(3) The laws governing thc choil.:c of flexuml ..nd torsion..1 properties of thc "equi­

valent" unstillcned plate.
H) The interaction of the longitudin4l1 direct and she.tr stresses in the plate (shear klg).
(5) The signilicance of the transverse shear stresses.

Factors (I) and (2) govern the viability of .. 2-D approxim4ltion to the problcm;
assuming tht:se considerations elicit a positive response. then provided the stillcncrs are
e10sely spal:t:d (i.e. (4) insignificant). and the plan dimensions are large in comparison to
those assodated with depth (rendering (5) a minor ell~'l:t), then 41ttention usually con­
et:ntrates on the parameters identified in (3), assuming the material properties permit the
"equivalent plate" to be defined[3. 4).

The majority of authors considering these problems concentrate on the particular case
of a n:gular shape in plan (usually rectangular) stiffened by a rectangul.tr grid such that
an equivalent orthotropic plate. for which there is a known solution. can he identified.
Troitsky[5] summarizes the IiteralUre in this regard. In this paper we obtain an 'lOalysis
which is restricted only by the generalized conditions under which the rigidity smoothing
process is valid; this implies the following initial assumptions.

(a) The properties of the plate ..nd stiffener vary gradu4Illy. and in such a manner that
the mid-surface of the plate can be considered as a n.. t plane with the l.:omponents ofdirect
stress perpendicular to this plane being everywhere zero.

(b) The geometry of the stiffeners is such that their behaviour can be described hy the
generalized beam theory[6].
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In order to simplify the central arguments with,)ut unJuly cnmrn)'1lhlng the: r~:n~e nr
a ppl ica tion of the resulti ng c4uations, the t~)III)Wlng fu rt hc:r (i.e. nl) 11 -c:~~~'n t1 ..!l1 ~h'U :11 i'lll 'n,
arc adl1ptcd for the purpl'Ses of the present ~tuJy.

(c) The shear centre and centroid of the stitreners .Ire coincidc:nt (lran~\er~c ,h':~l~ and
torsion:ll stresses independent).

(tI) Warping stresses arc negligible; i.e. the Wr,I')I].:! n1l1111cnt, and ·':'f'(~·i.:i!:, their
gradients arc not large, and the geometry l)f the structule ,ce al,n (f) rc·!.l\\ I.'; l1\'t
eondLl\:ive[7j to the gt'naation of significant restrained warping u!1i.kr uthcT ill~lding

eondi til1lh.
fe) The plate mid-surface is parallel tl1 one prilleipal a\i~ "readl .;tJtkncr U'h,-,cdl,)n

sti,ren<.'rs 1)1' \ariable cross-s<.'ction must satisfy (a) ahl1\c[Sj.
(f) The stifkned plate section will not distl1rl. and the torsi,)n~d ShL\lr ~tre",c.; in lhl'

st dreners a nd pia te furlll independen t systClllS (stitfellers fl)rrn all llpen cnhS-S<.'l.'l1l 'n 1111 /i
th<.' plate[5], and the width of the stitli:ners is 11l1t large in cl1rnparisnn tl1 thL' ,kpth PI' the
pbtel.

Subject tu these restrictiuns Sectil111 2 il1\L'stigatL's thL' Oliiditil'ns llk'nliliL'd undL'!' (I)
fl'r which a 2·D analysis, assul11l1lg unly the slress re,ull~lnts ctlnsidered In 1'!a''1c:l thll1
pbte theory arc actiVl', is pl)ssihle, Section I devel\l!" lind l<.'sts lhe re,ulling geI1L'ralill'd
lhe\lry. Thl' IIT1,d)sis is l'ast in \ariali\lllal ,',lrIll, thu, ell~lhlillg prlillary ~llld ~l'UjnILlr)

SI)llrCeS nf energy ill h\lth plat<.' and stilklll'r' tn hI' C1\Il,llkrl'd Illlk'PL'lllkllil\ 11I1d lhl' 1"'llits
sUlllllled Id!,:l'hraiGdly to descrihe the o\erldl hdu\inlll (nitldll\. IhL'rL·r\\I,' \\l' I'tlrther
'1llll'ltry tltc all~dy.,is by mllkillg tW\\ IH.ldlllondl d''1l1llpllt'lh.

(:;) Certain inconsis!l:ncics in the tre;ltlllent tlr lhe ,Irlllih tlUl' 10 I'tll~'Oll'~ 1'1111" dll t1\\[
siglliliCllt1tly 1,lkct tlte results.

(h) Slte;lr bg at1d trallsverse shear dkcls can be igllt1red,

In Secllons -l dlld 5 we investigille the siglufil'llllce td' ~1'\Ullll'lil,t1 (i!) \\!lilh eI1111I..ICCS
al'pro\lI11alions ()t1 lhe position or tlte unslrait1ed "SUrr.lc'C", 1IIId the ,11..1111 1'lll'I,c'\ ,t,"'l'd
;11 IIll' ,tilkner inlcrsectinlls. Tltese elll:cls han' hl'ell cOIl~l\kred hy ('lI~el1~ <'! ,dl')I, Iit 1 lll'\CI',

in the present paper we study thelll separilldy rdtlt..:r llt;1I1 COIlCUITenll y, lhu~ l'llahhng llie
Clrcul1hlance, under which each nl;IY be sigllilicllIll ltl he ilk'nti'il·ll. I urtherlllprc:, Ihl:
,moothing processe, adoptl'd here satisry the lnore gcnc:rali/ed l'\lIHlilltln\ CI'lhlderL'd
throughoul this paper, and (lbey the Re\"lprocal Thl'nrem[1j preci~ely.

111 Secti(lll (, we c()n,ider hridly Iww lhe dkc!'> isoL:lL'd IIIHler (h) l';l1l he IncllIlkd III

the rtlrmublion. 1I0wl'ver. lltmuglwut the detailed analy,i~, ;111 "lil'ar dreets nther tltlill
lhn~e ;,-.stlci;lled with Sl. Vl'nant torsion arc omilled.

, (III-: I.IMII'AII():"S (jOVI-:R:--':I:--':(i Tltl: ,\I'l'lIC\lI(J'.; 1'1 1ll.'.;!>I""\:"I) T(lI{S((),,\[

R)G(()ITY S:\.IUO II II :"ti PR()! TSSI'S

Morley[IOj has studil'd the prohlem or an iSlllropic plale ~uhject [I' pbne ~Irl'''- con­
ditions alld still't:llCd hy arhitrarily oril'ntcd sds or parlllki (e,xenlric) slilkncrs. I Ie C,"1­
dudl's that allY anisolropic material suhject tIl plane slre,,- condilinlh Clln he IIH'lklil'd ;h
a pb!l: strengthened by up to si.\ sets 01' sudl ,titl'enl'rs.

Ilowevcr, consider an isotropic plate or eonstanl lhicknl'ss slill...·lled hy l\\n seh Ill'
arhitrarily oriented sds or paralld stilrent:rs Illld subjL'ct to a comhinatioll or pure (i.e.
eOt1SIIIIlI) het1ding and twist as illustra!l:d ill Fig. I, Theil r,)r equilibriulll

JI., == .\t, SIl1' () ~.\t" Sill (I cos (Ie .If, ens (I

.\t.,,==sin(}cos(}(Jt, .\t,)+.\t,,(Sili II l'OS II)

Let us lake ror simplicity

II)

(~)
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Fig. I. Plate suoject to arbitrary pure bending and strengthened by two randomly oriented sets of
parallel stiffeners.

B

I'ig. 2. Considcration ofthc c4uilibrium conditions on e1cmcnt AUC takcn from thc platc delincatcd
in Fig. I.

Then whatever the actual stress distribution throughout the plate we must have

(3)

(4)

(5)

CT: = 0 everywhere: r <: = r l .: = r <y = 0 on all boundaries (6)

where the terminology is defined in Fig. 2.
Now under the generalized conditions being considered throughout this paper. and

defined in Section I, the following arguments govern the validity of any smoothing process.
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Fit:. J. Ddails of the deformation of elem.'nt GHJK taken from tht: platt: llf Fig

(a) The proportion of the total area of the problem over which the properties an:
smoothed must be small enough to approximate to an element subject to constant bending
and twist such as that shown in Fig. I.

(b) The smoothing process must yield a unique solution for equilibrium in thl' origiml
plate when subject to constant .H" .H...H ".

(c) The acceptance of a weighted average solution to eq ns ( I ) -(4) permits[ II Jarbitrary
nl\l\\:ments of the depth of the neutral axis[12] which in turn permits arbitrary vil)lations
of eqn (5). Thus bending rigidities so derivcd in general contain unboulllkd errors. and we
surmise therefore that the adopted smoothing process lllust provide an exact solution to
(b) above. This is equivalent to requiring that the solution process satisfy the patch test[21.

Consider thercrlll"e the behaviour of dement ABC taken from the plall: of Fig. I. Figure 2
shows the usual linear distribution of bending stresses throughout the full lkpth of the
stilkned plate, but the results are qualitatively unatkcted if any generalized assumption
satisfying eqns (4) and (5) is substituted. Let us assume then:fore that the hending stress
distributions illustrated in Fig. 2 pertain: then since thc dircct strcsscs at any dcpth arc
const;1I1t it follows from cqn ((I) that [", r" arc cvcrywhere zcro. It now follows that the
horizontal stresscs fT" fT". r,,, at any point in thc plall: (see c.g. point ()IT in Fig. 2) must
form ;t syslcm in cquilibrium over any clemcntal depth d.::, whcnce

fT;, = fT', cos' ()

applying cqn (7) at i = t, b (sce Fig. 2) yields

.1'" == .1'" I.C . .I~" == /U,) for II j-l)() .

(7)

(X)

Ilowc\\:r, sincc .1\ is a function of thc dimensions of the stilkncrs in the n-direction and r,

is not, it is clear that in general

i'" I- IU',) for all O.

Equations (X) and (l» are only compatible for 0 == l)() , i.e. the bending stress dis­
tributions illustrated in Fig. 2 can only exist in orthogonally reinforced plates. The reason
for this is evident from a study of the element GHJK taken from the plate of Fig. I. Figure
3 shows that the ends of the stiffeners 12 are twisted through an angh.: d:c which is only
zero when () =: 0 or <)0 ': the stresses associated with this deformation h,tve been excluded

from the analysis above.
The more complex trcatment required to take the above deformations into account

must inevitably link II'.n II'... and the twisting moments, whilst simplified methods for
assessing twisting rigidities arc independent of IH, and M ... Furthermore, the twist generated
on the dement shown in Fig. 3 has opposite etfects on faces I-IG, JK. Thus \.,hen two
adjacent such clements arc bent together, if the faces to which the bending moments AI,
arc applied are not to twist (i.e. satisfy the displacement boundary conditions for pure
bending), compatibility at the common interface must induce a rippling of the plate which
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in general destroys the concept of an element of a stiffened plate subject to constant
curvature conditions.

It would seem therefore that a 2·0 approximation can only be theoretically justified if
the stiffeners form a random orthogonal network with the material properties everywhere
defined by planes of material symmetry[3.4J coincident with the stiffener orientations. due
to the difficulty in obtaining 2·0 constitutive equations which satisfy either Betti's law[3J
or requirements (b) and (c) above in more generalized situations. The practical examples
of this class of problem include plates of arbitrary plan shape reinforced in a rectangular.
fan. or isostatic[5] manner.

3. VARIATIONAL fORMULATION Of THE Sr..IOOTHI:-;G PROCESS

The generalized variational principle in elasticity can be written :1s[l3. 14]

( 10)

or

(II)

where U. Ware the str:'lin and complement'lry energies in the system. respectively. D I the
function or independently defined strains :.md stresses removing the requirement that the
strains satisfy the compatibility equations, D! the function or independently defined stresses
and strains removing the requirement that the stresses satisfy the cquiliorium equ:.ttions.
and {'" {'! the work done oy the applied loading and prescribed displacements. respectively.

In eqns (10) and (II) all displacements (lI,). strains (I:,,). and stresses (11,,) can be
approxim<lted imlependently. whence weighted avemge solutions for equilibrium and COlll­

patihility <Ire ootained provided the constilutive equations c<ln be specified. Equations (10)

<llId (II) arc derivable from one another. :'lOd all other variational forms can be obtained
from whichever is more convenient :.md :'lpplying the appropriate constraints to the field
variaolcs. Now as only U and Ware functions of the constitutive equations it is dear that
in the present context, provided we can ensure equiv:'llcnce of both U and W between the
actual and smoothed problems over an element:'ll area of the plate. then .1 solution can be
obtained (provided suitable approximating functions can be found).

For the class of problem under consideration U and Warc normally expressed[1) as

(12)

( (3)

where Q and (p arc the strain and complementary energy densities. Furthermore. for linear
elasticity, from Clapyron's theorem[3] U == W whence

{11} = [DJ {f:}; {r.} = [C] {a}; [Dj = [C] I (I")

and thus attention can be focused on U or W, whichever is more convenient.
For pl.lstic (and non-linear clastic) applications eqns (10)-(13) must be written in

incremental form and the constitutive equations may not possess a unique inverse; never­
theless the problem can be linearized over an appropriately small increment orlond nnd (5U.
J Wevaluated{ 13. 15]. However. limiting attention to linear elastic orthotropic behaviour for
simplicity. we hnve[4] for the non-zero elements of [DJ
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Fig:. 4. Arhltrary orthog:on;tlly stiffened plate with the directions of the stiffeners everywh,-rc coinci­

dent with the curvilinear coordinates 1. (I,
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the strain ami stress distrihution III the 'l-dircdioll.
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Eq ua lions (14) and (15) relate the components of stress and strain ddined in a syslem
of curvilinear coordinates (:x. min the plane of the phtle which are evaywhae coincident
with the direclions of geometric and material orthogonality (sec Fig. 4). Then laking inlo
accounl eqns (4). since energy is a scalar quantity we can write the strain energy density in
the sti/kned plate as

where

=strain energy/unit are;t of plate at point i ( 17)

= strain energy/unit area of plate in each set of stiffeners at point i (I S)

where M H • M n , are the bending and torsional moments in a stiffener per unit area of plate.
In order to simplify the solution. we now make :x. fl coincide with the appropriate

neutral axes of the whole section at point i. Then from Figs 5 and 6 and Refs [I. 5. lOJ
(note also the experimental evidence in support of the assumption of independent shear
stress systems in the plate and stiffeners given in Ref. [9J). the strains and moments of the
stresses in the plate about the neutral axes at the point are given by
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distribution of
Slrains c/J

~; = Eel! 1"<Ill£.. +C/J)

( 1-"<Ill"B<a1

distribution of
stress ~6

Fig t>. S"di"n I llhr,'ugh Ih" plate pfFig. ~ sh,'"ing dimensions and basic assumptions concerning
the slrain anJ ;trc;s dislnbulk,n in the fJ·dircction.

,.., ~

':, = (:+(',)\1'.,,; M;, = 1., ~ (Dllf:,+DI~t:,,)(,:+(',) d.:

I::; = (:+('::)w/I/,; ,\f:;{1 = J.t: (DI~[;,+D11f:{:)(':+('{I) d.:
t' ~

( 19)

J

and in tIll.' stil1i:l1l..'rs ( i= :t./I)

(10)

whl..'rl..' r, is as ddilll..'d in Rd. [I:n
Sllhstitllting I..'qns (17) (20) illto eqn (16) yields

q - 11\1' II[l)'ll\I' I
~"'I -~ .2 1.:// J . l .~tJ f (! I)

(r .) J)1:(;~ +<'1<'11) 0J)II y~ +e;

f)"'1 = ( DI:C~ +('11:/1) c~ .) ()/}:~ I! +L',i

0
(1

{) /)1\.' 6

ddine the contrihuti0ns of the plate and stitrcners in the 'l-direction. respectively. D~II can
he deduced hy pl..'rmutation. ~md the prime is a reminder that the (smoothed with respect
to depth) ohtained values are not necessarily moment curvature relationships(ll}. the
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Fig. 7. !'Ian dimensions and houndary cllllditions .,1' lhc trapclOidal plate ABCD considen:d in
Section 3. All dimensions in film.

stresses in the plate and stilli:ncrs arc rdated to thc curvalures through eqns (19). (141.
and (15).

Now: 11'.'1':' lr,lllsforms as a sccond-order Cartesian lensor[ 16). i.c.

(22)

where

[

COS1 (J sin1 (}

p.] = sin1
(} cos1 (J

. - sin () cos (J sin (J cos ()

2 sin (J cos () ]

- 2 cos () sin ()

cos1
() - sin1 ()

and () is ddined as shown in Fig. 4.
Equations (21) and (22) enable the evaluation ofeqns (12) and (13) byidentilkation

of the generalized stress-strain relationship

(23)

To demonstrate the utilization of this general expression we present the results (in
Newton. millimetre units) obtained for two perspex (E = 3774 N mm c. \' =:; 0.35) plates
using different methods.

Figures 7 and 8 show a plate ABCD. of symmetrical trapezoidal shape in plan. subject
to a unit central point load. This problem is suitable for initial consideration due to the
regular geometry of the plate. and the 1~ICt th.lt the loading and bound,try conditions
arc capable of being simulated with acceptable accuracy in the laboratory. Furthermore.
although the twisting moments exhibit theoretical singular behaviour at the corners[ lOJ.
the contributions of these singularities to the solution have been minimized by considering
loading which generates a small amount ofstrain energy in these regions. and the theoretical
solutions presented assume a single valued solution for the corner twisting moments.

The Rayleigh-Ritz results presented in Fig. 9 have been obtained using a solution
process[ll] based on eqn (10) with the constraint that (iO'kl =:; O. Since a straightforward
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Fig. 8. Details of the stiffener dimensions for the plate illustrated in Fig. 7. All dimensions in mm.
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fig. 9. Results obtained for the problem delineated in Figs 7 and 8. All values arc in Newton
millimetre units: (.. ) M. 011 F·G; (b) M. on A-B; (c) dellection on F-G. -. Rayleigh -Ritz; ••

tinite clement; 6. experimental result.

Rayleigh-Ritz approximation results in all defined field variable derivatives being explicitly
prescribed continuous, the remedial action specified in Ref. [II] has been implemented to
simulate the anticipated singularity in bending moments under the point load. The com·
parative finite dement results have been obtained using a solution based on Reissner's form
of el/n (II) (i.e. requiring the inverse of eqn (23)) which awards piecewise continuity to the
bending moments, a finite weighting towards continuity of M.t •x and My" but not IH... and
AI"., 4lnd independent \ineur and quadratic approxim<ltions to the moments und dis­
plucements within each element. respectively. The process is therefore able to interpret this
problem as the limiting case of a continuous one in u manner very similar to the c1ussical
anulysis provided a sutliciently fine mesh is used, and no specific allowance for the singular
behaviour of Mx and Mi' under the point loud has been made. Both sets of theoretical
results agree with those obtained experimentally to within the error bounds on the latter.

The plate WXYZ illustrated in Figs 10 and 11 tests the theory under significantly
different (and more generalized) conditions ofgeometry and loading, and has the additional
advantage that there is no singular behaviour of the field variables. The Rayleigh-Rit7
results presented in Fig. 12 were obtained using Simpson's rule with II integrating points
in each direction, and with the generalized stress-strain relationship oreqn (23) re-evaluated
at each integration point. The finite element results were obtained using a regular 8 x 6
mesh of bisected quadrilaterals with eqn (23) assumed constant within each element and
SAS H: t-c
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Fig. II. Scction If If through the platc illuslralL'd III hg. 10

hg 12. Results obtamed for the prohklll iliustralL'd in hg_ 10 and II. All ,alt,,:- ;trc: III Newton
nulllllll.'lre ullits: (aldel1ectioll on A Ii: (bl.H"OIl:\ It . I{;"klgh Rli/: •. Iilltlcdclllc'nt.

evaluated at the clement centroids. These results demonstrate the nutlleri...:al stability of the
smoothing process on a typical stiffening pattern of practical signilical1l.:e covered by the
genl:l',tlized theory; no experimental results arc available for this prookm.

In view of the clHllplexity of thcse problems, and the relatively weak weightcd averages
sought for the displacements through Reissner's principlel171 these results demonstrate the
stahility of the numcrical process advocated here for the implementation orcqn (23) subjed
to the limitations obtained in Section 2.

4. AMENDED TIlEORY TO ALLOW FOR TilE EFFECT OF TilE STRAINS DCE TO
POISSON'S RATIO ON TilE POSITION 01' TilE NEUTRAL AXIS

In the previous analysis thc ncutral axes were located on the assumption that the
bending stn:sses in the directions parallel to the stiffeners were independent. Simultancously
the bcnding momcnts wcre c'lkulated indllding the cllects or \' in the platc. thus destroying
to an undetermincd extcnt C4uilibrillm in the plane or the platc. In the present analysis the
neutral .Ixes are dc/ined .IS thosc of zero total strain in the :x. and li·directions, and allowed
to locate themselves so that C4uilibrium is rcstored. We shall continue to ignore thc clfect
of \' in the stiffencrs on thc calculations, but note that the results demonstrate this is not
important.

On the above basis it is possible to proceed assuming that all the information given in
Figs 5 and 6 still pertains, but allow the neutral axes to locate themselves so that (ifpossihlc)
a state of pure bending is obtained, In the :x·direction. assuming the neutral axis (NAl
occurs in the stillcncr
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Fig. 13. St.'CtiQn fJ-fJ over a length equivalent to the local stiffener spacing: neutral and centroidal
axes not necessarily coincident.

99

(24)

Since the essential argument of this section is unaffected qualitatively by the degree of
material orthotropy. it is convenient (for the purposes of clarity) to consider only isotropic
behaviour with

En = Epp = E; v,p = l'lh = I' (25)

substituting eqns (19a). (15), and (25) into eqn (24), carrying out the appropriate integration.
making the approximation that (I - I'~) = I. and rearranging yields

_ A~
c = r - I'I'C

% ., II A, (26)

(the same result is ohtained if NA is assunH:d to occur in the plate) where ,.1% is the area of
the full section illustrated in Fig. 13, A: the area of the stil1cner illustrated in Fig. 13. A~'

the area of the plate illustrated in \:ig. I J ..'\ the distanl.:e from the mid-depth of the plate
to the I.:entroid of the stil1cned sCl.:tion and

summing the horizontal forces in the IJ-direl.:tion yields

_ v Ali
e-I'- e ~II -. P % A

I' /t
(27)

where the terminology used in eqn (27) follows from that used in eqn (26). Suhstituting e4n
(27) into e4n (26) and ignoring terms in v~ yields

or. substituting

A, = A ~ + A;; ('~ = e% - )\

, _( A:)(. = Vpl' 1--·-
% • /1 A,

(2S)

where (.~ is the distance from the centroid to NA as shown in Fig. 13. Clearly a similar
expression can be obtained for eit. From eqn (28) we deduce the following.

(I) e~. e~ are totally dependent on v, and thus if effects due to Poisson's ratio are
considered negligible (':. e~ = 0; c% = .i\; ell = .Vp.
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a-1- - ---- - +a[7
fJ --- ---~ 1

a -f - - - - - - -t-:zF
- - --tJ

b) Stnins induced by M_

Fig. I~. Strains induced in a singly stiffened plate by application of (al M" and (b) M" in turn.

(2) Equation (28) is a separable function of the displaced shape and plate dimensions,
and each elfect can therefore be discussed separately.

C~) The geometrical configuration which maximizes e~ is large and closely spaced
stillcners in the II-direction. and no stiffeners in the (X-direction. Indeed. Fig. 14 clearly
shows that as f. decreases and .i'li increases. a situation is always reached at which \' can
move NA totally outside the section for certain moment combinations. Consequently we
surmise Ihat in general. the application of transverse loading to a stiffened plate generales
a wndition of wmbined bending and axial stress of the type

(2lJ)

where both i. i = ox. f! in turn, /.: is the result'lnt axial force/unit width. and /(, the generalized
strain against which r: docs work.

(4) eusens ('/ (//.[9) obtained very poor correlation between experimentally and theore­
tically determined estimates of the traditionally defined bending rigidities (cf. Section J),

ahout the weaker principal axis, for the situation illustrated in Fig. 14, The argument of
(J) abl)Ve shows that this is because the assumption of centroidal neutral axes is most in
error under these conditions. However, this may not be a significant source of error in
practical stiffened plate theory applications. as these generally fatl into two categories.

(a) Predominantly singly spanning plates (in say the If-direction), with M ll generally
significantly less than M/1/l; for efficiency such plates are only stiffened about the /f-Ifaxis.
thus

(b) Doubly spanning plates. i.e. M n • Mill! are of the same order; such plates arc usually
stiffened in both directions. thus

where U \. [!: arc the theoretical strain energies in the stitfened plate with centroidal and
fully consistent neutral axes, respectively.

Clearly. therefore. an upper bound on the effect of von the location of the neutral axes
can be ohtained by re-'1I1alysing the doubly spanning, singly reinforced quadrilateral plate
considered in Section .3. but this time using the constitutive equations defined by eqn (29).

Rather than attempt to formulate eqn (29) directly. it is more convenient to note that
eqn (21) was effectively obtained by evaluating the work done per unit area of the plate by
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Table I. Illustrating the effect on the plate delineated in Figs 10 and 11 ofsubstituting fully consistent for centroidal
neutral a;~es

Support conditions Theoretical results at centre of plate (N. mm units)
(restrained valuesl Section 3 Section 4

WZ.Xy WX.ZY IV A-f.= M, M, ... Jr. = Jr, M,

... none 20.4 660 24 20.1 652 30
2 K'; W .... none 4.05 229 15 3.93 223 14
3 ... It' 8.10 311 135 7.98 306 133
4 u·: "'." It' 3.41 206 61 3.31 201 62
5 n': """.,. w; W,/f 2.18 134 59 1.93 114 47

the strains against the stresses for arbitrary e., eIJ' The analyses of Section 3 were then
carried out by putting

It therefore follows that eqn (29) can be re-expressed in the form of eqn (21) with e., eIJ
derived through eqns (26) nnd (27). The solution to any given problem can then be sought
by obtaining an initial solution assuming p = O. re-evaluating I', and repeating the analysis
until convergem:e is achieved.

Table I indicates the effect of using fully consistent neutral axes on the chosen plate
using several different modes of support. In accordance with (a) and (b) above. using the
support conditions for which this stiffening arrangement is efficient (analyses I nnd 2) the
dil1crcnce between the results obtained using the centroidal and consistent theories is
minimal. Using the boundary restraints considered in ~lIlalyses 4 and 5, errors of 3 and
II.S'Y.,. respeclivcly. arc obtuined from the centroidal theory.

These results show that provided a plate is stiffened reasonubly emciently, negligible
error will he induced by assuming centroidal neutral axes.

All the analyses summarized in Table I converged within three iterations; however,
the equations an: unstable when p::::: O. and the above results were obtained by pUlling
11',/1/1 =: 0 if I' < 0.1.

5. ALLOWANCE FOR TilE WORK DONE IN TilE STIFFENERS DUE TO POISSON'S RATIO

Consider u small clement of a plate subject to the restrictions under consideration in
this paper. and the dimensions of which are defined by the terminology of Figs 5 and 6.
Figure 15 shows such un clement subject to biaxial tension in the principal directions of
orthotropy. Over the volume b.hpdm(where tim is the lesser of d., tip) the work done by the
strains due to Poisson's ratio in the stiffeners is given by

f t
a"

t t
r - --,-- :'I I
I t I-- I- _J --a. t a.I I- r ------ 1 --I I I
I t I-- L.

l. _____
.J ---- ----- -- --I

+ ~ ~ !
alJ

Fig. 15. Plan view ora typical element ofa doubly stiffened plate subject to plane stress with <1, > <1g•
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Thus for a plate in bending with 1:
"

I:u varying linearly with depth as illustrated in Figs 5
and 6. {. '1/1 can be re-expn:ssed in terms of the locally smoothed energy density. given by

(30)

In addition the direct stresses in the stiffenas are IWW related to the stiffener strains by
eqns (15) over the \'olume of stiffener overlap. Thus n; now becomes

(31 )

and similarly for n;l.
The omissil)n of these modifications tl) eqn (Ih) is acceptable if the volume ofstitfener

overlap is small in comparison with the total volume of the stitlcned plate. However. as the
slab thickens and stilkner spacings are decreased. so the stifTeners tend to dominate the
behaviour. and significant errors in the strain energy density can be anticipated under these
circumstances.

Since the dlcct of \. ,/1 and \'/1, on the Illovement on the neutral axes is minimized when
the drcct under the present discussion is a lllaxil11ulll (,Jnd vice versa). it is always permissibk
to allow for the latter by re-writing cqn (Ih) as

(3~)

Substituting eqns (15) alll! (19a) into eqn CHI). carrying out the integration and sub­
stituting this result and eqn (31) into eqn (3~) yidds (cr. eqn (21»

whcre [1)"1 = (1)'1 except lhat 1)"[ I. II. I)"I~. ~I an: modified according to eqn (31) and

with

Figure 16 shows the central displacements ootained ddining the strain energy density
oy ooth eqns (~I) and (3) fur a silllply supported square perspex plate (side kngth. 1000
111m; thickness. :' mill; loading. 0.0 I N 111111 ~) stitfened by a regular grillage of beams
~O mill deep. 50 nll11 spacing. and widths \'arying frolll 10 to 50 mm. Also considered is a
25 mm thick unstillcned perspcx plate of identical plan dimensions and subject to the same
loading. The result so obtained is slightly smalkr than by using eqn (33) to ddine the 5 111111
plate with 50 111m wide stilTeners at 50 111111 spacings. This is because the torsional stitfness
of the latter is reduced oy the 50 nll11 square grillage of 20 mm deep cuts. However. all
other terms in the moment curvature relationships arc identical for both plates.

Equations (21) assume that the strains due to \' in the stilfeners occur without generating
any stresses. For the plate and stilfener configurations considered in Fig. 16 this leads to
results between 6 and 19% overllexibk; similar discrepancies are obtained for the stresses.
For practical applications it would appear therefore. that the use of eqns (33) in place of
eqns (21) can eliminate significant errors withollt penalty.
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Fig. 16. Typical results ohtained for the example prvblcm considered in SL'Ction 5.

6. CONCLCSIONS

(I) The generalized conditions under which a ::!-D ,1Ilalysis for thin (i.e. plan dimension~

large in comparison to the cross-sectional ones) stillcned plates can be formulated arc a~

ohtained in Sections I and 2.
(2) A simple analysis assuming centroidal neutral axes resulting in an easily utilizec

set of generalized constitutive equations has been presented in Sections 3 and 5 for a clas~

of stifkned plates which includes the vast majority of practical applications of stiflcnec
pia Ie theory.

The analysis <':,1Il be rework&:d to indud&: ellccts (<.:) (n identified in Section I using
estahlished theory should they be <.:onsiden:d significant in a given aprlic,ttion. It wa~

similarly considcr&:d that the cOlH.litions under which ellccts (h) arc significant do nol
p&:rtain.

If the stillcners arc widdy spaced shear lag can be allowed for by assuming the shear
slrains aI'&: n&:gligibk and forming the energy in the system in terms of ,In additional
parameler which enables the depth of the neutml axis to vary in such a manner that the
shear lag equations[ IX, 19] arc satistied. If the stiffeners arc of such a depth that the stillcned
plat&: be<.:oll1es moderately thick, the transverse shear stresses in the stiffeners can be simu­
lated using an additional parameter which allows the stiflcner <.:ross-sections to rotate with
respect to one another[2, IS].

(3) The assumption of centroidal neutral axes has, in Section 4, been shown to be
suflkiently accurate under (lrbitrary conditions for engineering purposes; it has also been
shown that for ellkient stillcning patterns, the error so induced is negligible. However, the
stresses generated in the stilfeners due to Poisson's ratio, which arc also normally ignored,
may be significant. In Section 5 it has been shown how these stresses can readily be taken
into account.
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